Bipartite Subgraphs and Quasi-Randomness
نویسندگان
چکیده
We say that a family of graphs G = {Gn : n ≥ 1} is p-quasi-random, 0 < p < 1, if it shares typical properties of the random graph G(n, p); for a definition, see below. We denote by Q(p) the class of all graphs H for which e(Gn) ≥ (1 + o(1))p ( n 2 ) and the number of not necessarily induced labeled copies of H in Gn is at most (1 + o(1))pn imply that G is p-quasi-random. In this note, we show that all complete bipartite graphs Ka,b, a, b ≥ 2, belong to Q(p) for all 0 < p < 1.
منابع مشابه
Hereditarily Extended Properties, Quasi-Random Graphs and not Necessarily Induced Subgraphs
Recently nmch at tent ion has been focused on the theory of quasi-random graph and hypergraph properties. The class of quasi-random graphs is defined by certain equivalent graph properties possessed by random graphs. We shall investigate properties P which do not imply quasi-randomness for sequences (Gn) of graphs on their own, but do imply if they hold not only for the whole graph Gn but also ...
متن کاملLarge Holes in Quasi-Random Graphs
Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths ...
متن کاملPartial Hamming graphs and expansion procedures
Structural properties of isometric subgraphs of Hamming graphs are presented, generalizing certain results on quasi-median graphs. Consequently, a relation on the edge set of a graph which is closely related to Winkler–Djokovi6 c’s relation is introduced and used for a characterization of isometric subgraphs of Hamming graphs. Moreover, some results considering semi-median graphs and expansions...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملWeak Modular Product of Bipartite Graphs, Bicliques and Isomorphism
A 1978 theorem of Kozen states that two graphs on n vertices are isomorphic if and only if there is a clique of size n in the weak modular product between the two graphs. Restricting to bipartite graphs and considering complete bipartite subgraphs (bicliques) therein, we study the combinatorics of the weak modular product. We identify cases where isomorphism is tractable using this approach, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 20 شماره
صفحات -
تاریخ انتشار 2004